Modules at Boundary Points, Fiberwise Bergman Kernels, and Log-Subharmonicity

نویسندگان

چکیده

In this article, we consider Bergman kernels with respect to modules at boundary points, and obtain a log-subharmonicity property of the kernels, which implies concavity related kernels. As applications, reprove sharp effectiveness result conjecture posed by Jonsson–Mustaţă strong openness points.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curvature of Vector Bundles and Subharmonicity of Bergman Kernels

In a previous paper, [1], we have studied a property of subharmonic dependence on a parameter of Bergman kernels for a family of weighted L-spaces of holomorphic functions. Here we prove a result on the curvature of a vector bundle defined by this family of L-spaces itself, which has the earlier results on Bergman kernels as a corollary. Applying the same arguments to spaces of holomorphic sect...

متن کامل

Weighted Bergman Kernels and Quantization

Let Ω be a bounded pseudoconvex domain in C N , φ, ψ two positive functions on Ω such that − logψ,− log φ are plurisubharmonic, z ∈ Ω a point at which − log φ is smooth and strictly plurisubharmonic, and M a nonnegative integer. We show that as k → ∞, the Bergman kernels with respect to the weights φkψM have an asymptotic expansion KφkψM (x, y) = kN πNφ(x, y)kψ(x, y)M ∞ ∑ j=0 bj(x, y) k −j , b0...

متن کامل

Superconnection and family Bergman kernels

We establish an asymptotic expansion for families of Bergman kernels. The key idea is to use the superconnection as in the local family index theorem. Superconnexion et noyaux de Bergman en famille Résumé. Nous annonçons des résultats sur le développement asymptotique du noyau de Bergman en famille. Let W,S be smooth compact complex manifolds. Let π : W → S be a holomorphic submersion with comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Peking mathematical journal

سال: 2023

ISSN: ['2524-7182', '2096-6075']

DOI: https://doi.org/10.1007/s42543-023-00070-8