Modules at Boundary Points, Fiberwise Bergman Kernels, and Log-Subharmonicity
نویسندگان
چکیده
In this article, we consider Bergman kernels with respect to modules at boundary points, and obtain a log-subharmonicity property of the kernels, which implies concavity related kernels. As applications, reprove sharp effectiveness result conjecture posed by Jonsson–Mustaţă strong openness points.
منابع مشابه
Curvature of Vector Bundles and Subharmonicity of Bergman Kernels
In a previous paper, [1], we have studied a property of subharmonic dependence on a parameter of Bergman kernels for a family of weighted L-spaces of holomorphic functions. Here we prove a result on the curvature of a vector bundle defined by this family of L-spaces itself, which has the earlier results on Bergman kernels as a corollary. Applying the same arguments to spaces of holomorphic sect...
متن کاملWeighted Bergman Kernels and Quantization
Let Ω be a bounded pseudoconvex domain in C N , φ, ψ two positive functions on Ω such that − logψ,− log φ are plurisubharmonic, z ∈ Ω a point at which − log φ is smooth and strictly plurisubharmonic, and M a nonnegative integer. We show that as k → ∞, the Bergman kernels with respect to the weights φkψM have an asymptotic expansion KφkψM (x, y) = kN πNφ(x, y)kψ(x, y)M ∞ ∑ j=0 bj(x, y) k −j , b0...
متن کاملSuperconnection and family Bergman kernels
We establish an asymptotic expansion for families of Bergman kernels. The key idea is to use the superconnection as in the local family index theorem. Superconnexion et noyaux de Bergman en famille Résumé. Nous annonçons des résultats sur le développement asymptotique du noyau de Bergman en famille. Let W,S be smooth compact complex manifolds. Let π : W → S be a holomorphic submersion with comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Peking mathematical journal
سال: 2023
ISSN: ['2524-7182', '2096-6075']
DOI: https://doi.org/10.1007/s42543-023-00070-8